
The Top 6 Unknown SDLC Risks Legit Uncovers A

Unknown SDLC Risks
Legit Uncovers

The Top 6

The Top 6 Unknown SDLC Risks Legit Uncovers 1

In our work with enterprises in industries from financial services
to healthcare, high tech and more, we most often uncover:

When security teams first start using the Legit Application Security Posture
Management (ASPM) platform, the most common reaction is surprise at the
amount of unknown risk lurking in their software development environments.
Since so many of these risks are commonplace across enterprises, we thought
it would be beneficial to share our top findings, along with tips and advice
on avoiding them.

Exposed
secrets

Developer
permissions sprawl

Unknown
build assets

Missing AI
guardrails

Misconfiguration
of build assets

IaC
misconfigurations

01

04

02

05

03

06

Learn more

Learn more

Learn more

Learn more

Learn more

Learn more

The Top 6 Unknown SDLC Risks Legit Uncovers 2

Secrets are extremely pervasive in software
development environments, and their exposure
is one of the most common risks unearthed by
the Legit platform. This is troubling because secrets
are often the first foothold that attackers leverage
to mount much larger attacks.

The types of exposed secrets we find most
often include:

 Cloud keys (AWS/GCP)

 GitHub personal access tokens and CI/CD
server keys (Jenkins, ADO)

 PII, such as Social Security and
credit card numbers

The Legit research team finds an average of 12
secrets submitted per 100 repositories every week.

And exposed secrets are not just a hypothetical
risk. In a recent survey of 350 IT and cybersecurity
professionals and application developers,
TechTarget’s Enterprise Strategy Group (ESG)
found that the top cybersecurity incident (related to
internally developed cloud-native apps) experienced
by survey respondents in the previous 12 months was
secrets stolen from a source code repository.

What we find

01 Exposed secrets

Legit secrets detection and remediation

https://info.legitsecurity.com/esg-modernizing-application-security-to-scale-for-cloud-native-development

The Top 6 Unknown SDLC Risks Legit Uncovers 3

Where do we find exposed secrets?
We regularly find exposed secrets in source code,
which can be accessed by any user with access
to the repository.

But increasingly, we are finding exposed secrets
in many other places as well — like yaml files,
build logs, containers, bash scripts, artifacts,
Jira, Confluence, Slack, and more.

Why is secrets exposure pervasive?
Why has secrets sprawl become such a
significant issue? Partly because modern
development requires lots of different tool sets
that need to integrate with each other, and
modern apps require hundreds of secrets to
function (API keys, third-party tokens, cloud
credentials, etc.).

At the same time, developers are pushed to
innovate and develop code as fast as possible,
frequently leading to shortcuts intended to drive
efficiency and speed. One of those shortcuts
is using secrets in development to accelerate
testing and QA.

The problem is that it’s very easy for these
secrets to remain exposed. For example, a
developer may test a piece of code with a key.
When it works, they move it into production
without removing that key. They either forget,
or the key works and they don’t want to
adjust it.

This practice and others like it lead to a
continuously growing and significant source
of risk to the organization.

Sisense
APRIL 2024

A significant data breach at Sisense was traced
back to an accidental exposure of sensitive data
via a GitLab repository. A hardcoded secret
in the repository provided unauthorized users
access to Sisense’s cloud storage, leading to the
compromise of vast amounts of customer data.

Toyota
OCTOBER 2022

Toyota announced a data breach caused by
a subcontractor who accidentally published
source code containing a hardcoded secret
access key on a public GitHub repository. This
exposed the personal data of nearly 300,000
customers, highlighting the risks associated
with insufficient security practices around
sensitive information management.

Related attacks

https://www.zdnet.com/article/sisenses-data-breach-is-serious-enough-that-cisa-is-investigating-heres-what-you-need-to-do/
https://www.cpomagazine.com/cyber-security/toyota-confirms-third-party-data-breach-after-sensitive-info-leaks-on-the-dark-web/

The Top 6 Unknown SDLC Risks Legit Uncovers 4

Secrets security

Learn more

To prevent exposed secrets

Focus first on SaaS services keys (e.g., AWS
access keys), since if code is leaked, credentials
to SaaS services are immediately usable if they
are valid, whereas internal credentials require
attackers to also have network connectivity.

 What we recommend

Our recommended best practices include:

 Avoid committing secrets to any Git repository.
Once in the Git history, remediation steps
are lengthy.

 • Avoid git add * commands.

 • Name sensitive files in .gitignore.

 • Don’t rely on code reviews to discover secrets.

 • Use automated secrets scanning on repositories.

 • Use CLI or pre-hook commit tools when
able to catch secrets before they get to
your Git repository.

 Change the source code to not rely on hard-coded
secrets by using a password manager, environment
variable, etc. Then revoke the sensitive data.

 • Use encryption to store secrets within
Git repositories.

 • Use local environment variables, when feasible.

 • Use secrets as a service solutions
(e.g., Hashicorp Vault, CyberArk Conjure, etc.).

 Avoid secrets within build logs and sharing
secrets via messaging services.

 Reduce AuthZ and Admin credentials to
least privileged.

Related Resources

https://www.legitsecurity.com/enterprise-secret-scanning

The Top 6 Unknown SDLC Risks Legit Uncovers 5

We commonly uncover build assets in
organizations’ development environments that
they are not currently using, and aren’t aware of.
For example, working with a major manufacturing
enterprise, we exposed a rogue Jenkins server in
their environment; they weren’t aware it was there,
and it was not only exposed to the Internet,
but also had risky misconfigurations.

Why are there so many unknown assets in build
environments today? Developers “bringing their
own devices” plays a big role.

In the not-so-distant past, there was a sharp
divide between dev and ops — developers
created applications, and operations ran them.
Now development teams are creating their
own production and build pipelines. This helps
development move substantially faster, but security
has lost visibility. We often come across scenarios
where development teams are spinning up Jenkins
servers, Azure DevOps pipelines, or JFrog artifact
repositories, and the security team has no visibility
into where or when.

What we find

Legit identification of unknown assets

02 Unknown build assets

The Top 6 Unknown SDLC Risks Legit Uncovers 6

Related attacks

SolarWinds

Source

DEVELOPER

ATTACKER

CUSTOMER

Build

Dependencies

Artifact

Downloaded compromised
update, unknowingly installing
a backdoor (SUNBURST)

SUNSPOT monitored build
process and replaced legitimate
source code files with new files
allowing backdoor access
(SUNBURST) to customers

Attackers inserted malicious code
(SUNSPOT) into a SolarWinds DLL

file undetected using temporary
file replacement techniques

The attacker entry point was an unknown, and
un-monitored, build server. Misconfigurations
played a role as well, but the lack of visibility
into build assets was the first flaw in a series
of vulnerabilities.

The SolarWinds attack, where hackers deployed
malicious code into its Orion IT monitoring
and management software used by thousands
of enterprises and government agencies worldwide,
originated with an unknown asset.

The Top 6 Unknown SDLC Risks Legit Uncovers 7

To prevent unknown build assets

 What we recommend

In the end, you need a tool or process that will
help you answer the following:

 Do you know where all of your developer
assets are?

 Can you easily map out your pipelines from
start to finish?

 Can you tell when developers spin up a new
Jenkins environment and things like that?

 Do you know where you have appropriate
security controls within your pipeline?

Trust but verify. Most development teams
are happy to share what’s in use where, but
sometimes there are assets the development
team doesn’t even know exist. And consider
situations like M&A where a flood of new
assets are suddenly in play.

Securing build
systems

Learn more

Related Resources

https://www.legitsecurity.com/blog/why-protecting-build-systems-is-crucial-in-modern-software-development

The Top 6 Unknown SDLC Risks Legit Uncovers 8

Legit identification of misconfigured build asset

Misconfigured SDLC assets, such as SCMs,
build servers, and artifact repositories, provide
an opportunity for threat actors to gain access
to systems and then move laterally within
an organization. These assets all provide
configuration mechanisms to prevent this,
but they need to be used and continually
monitored for proper use.

That use and monitoring are clearly not consistent,
as we frequently find misconfigured build servers.
This is a common problem, but also one that
creates significant vulnerabilities. Build systems
are essentially automated, implicitly trusted
pathways straight to the cloud, yet most aren’t
treated as critical from a security perspective.
In many cases, these systems — like Jenkins,
for example — are misconfigured or otherwise
vulnerable and unpatched.

What we find

Working with one large enterprise, the Legit team
found an exposed Jenkins server with access to
the public Internet. The Legit research team was
able to access proprietary code via the Internet
through that Jenkins server.

We also often find Jenkins servers that have
unnecessary access to many S3 buckets.
An attacker who breaches a server with this kind
of access has a treasure trove of data to pursue.

03 Misconfiguration of build assets

The Top 6 Unknown SDLC Risks Legit Uncovers 9

Related attacks

Codecov
In the Codecov attack (shown below), attackers
used an unpinned Docker image to alter the
Bash Uploader script. This modification enabled
them to steal sensitive data from many of
Codecov’s clients, highlighting the risks of not
locking Docker image versions in CI/CD pipelines.

Kaseya
Attackers used an exploit to get into a build
pipeline and change code in a package that
was then sent to all of Kaseya’s customers.

Source

DEVELOPER

ATTACKER

ATTACKER

CUSTOMER

Build

Dependencies

Artifact

Attackers obtained
additional secrets from
CodeCov customers using
the malicious script

Attackers obtained credentials to the
artifact storage and then uploaded a
modified script to extract environment
variables and secrets

https://www.bleepingcomputer.com/news/security/hundreds-of-networks-reportedly-hacked-in-codecov-supply-chain-attack/
https://news.sophos.com/en-us/2021/07/04/independence-day-revil-uses-supply-chain-exploit-to-attack-hundreds-of-businesses/

The Top 6 Unknown SDLC Risks Legit Uncovers 10

 What we recommend

To prevent misconfigured build assets

 Limit permissions

Limit the ability to create public repositories. When
non-admins can create public repos, it increases
the likelihood that a repo that should be private
becomes public by mistake, and once public, it can
be published, cached, or stored by external parties.

Similarly, ensure that cloud storage (e.g., S3 buckets)
is not publicly writable and ensure it is only publicly
readable when necessary. Unprotected S3 buckets are
one of the major causes of data theft and intrusions.

 Never execute third-party resources
before verification

Third-party resources should be verified by checksum
or, if checksum is unavailable from the supplier,
consumed from the local artifact registry after it’s
been downloaded and reviewed. If users of CodeCov
followed this best practice, they would have caught
that the checksums did not match and avoided being
collateral damage from their compromised supplier.

 Avoid unsafe cross workflow actions

When possible, avoid creating a job in your builds
that references another image that might be
changed externally. For example, avoid always pulling
the “latest” image from an external source because
if that image is compromised, you will automatically
pull in the affected image.

 Branch protection

Enable branch protection and enforce code
review (where the reviewer is not the committer)
for all important repositories.

 Continual monitoring

Keep in mind that it’s important to have continual
monitoring and verification of configurations.
We recently partnered with a security team at
a large enterprise; the team would enable branch
protection, and then their development team
would disable it. Obviously, developer/security
communication and collaboration goes a long
way here, but also continual monitoring of a
constantly changing environment.

 Enforce authentication

Ensure build servers require authentication.
Some build servers, like Jenkins, have configuration
settings that do not require authentication, which
allows any user with network access to the server
to perform any action.

 Expire keys

Security keys are often not set to expire by default.
Ensure that your infrastructure settings define
security key expiration times and key rotation.

The Top 6 Unknown SDLC Risks Legit Uncovers 11

GenAI has recently emerged as an additional
unknown risk we uncover. Although it gives
developers an easier way to produce code
at scale, it also adds risk.

We often discover that security teams first
don’t know where AI is in use, and then find
out it’s used in a location that isn’t configured
securely. For instance, a developer is using AI
and generating code on a repository that
doesn’t have a code review step.

What we find

This could, for instance, allow for licensed code
to enter the product, exposing the organization
to legal or copyright issues.

We also often detect low-reputation LLMs in use,
which could contain malicious code or payloads,
or exfiltrate data sent to them.

Legit AI security command center

04 Missing AI guardrails

The Top 6 Unknown SDLC Risks Legit Uncovers 12

We’re already seeing just how vulnerable
organizations are to AI models when they
aren’t properly monitored, secured, or managed.
Developers are mistakenly leveraging malicious
AI models available on open-source registries
(e.g., Hugging Face) in their own software projects.
And even more LLMs and AI models contain bugs
and vulnerabilities that have the potential to cause
AI supply chain attacks, like the vulnerabilities Legit
recently uncovered in LLM automation tools and
vector databases or the AI Jacking vulnerability
Legit discovered last year.

Every day, there are more reports of AI security
vulnerabilities from prompt injection to inadvertent
data disclosure to poor implementations and
misconfigurations of LLMs in applications.

Related threats

And AI security risks go well beyond open-source AI.
Leading providers of commercial and proprietary AI
products have experienced their fair share of security
setbacks themselves. For instance, OpenAI disclosed
a vulnerability last year in ChatGPT’s information
collection capabilities that attackers could exploit
to obtain customers’ secret keys and root passwords.

This risk is compounded by the fact that security
teams typically have very little visibility into where
and how GenAI is being used by development teams.

To prevent AI risk

Security teams need to know (and typically
don’t) who’s using AI, where they are using it,
and if there are guardrails in place in
those areas.

 What we recommend

Best practices include:

 Threat modeling the impact of AI-specific threats

 Beyond functionality and performance,
considering security when selecting AI models

 Employing tools to get visibility into AI use
across your development environment

 Protecting AI models from direct or
indirect access

The Top 6 Unknown SDLC Risks Legit Uncovers 12

https://thehackernews.com/2024/03/over-100-malicious-aiml-models-found-on.html
https://thehackernews.com/2024/03/over-100-malicious-aiml-models-found-on.html
https://www.legitsecurity.com/blog/the-risks-lurking-in-publicly-exposed-genai-development-services
https://www.legitsecurity.com/blog/the-risks-lurking-in-publicly-exposed-genai-development-services
https://www.legitsecurity.com/blog/tens-of-thousands-of-developers-were-potentially-impacted-by-the-hugging-face-aijacking-attack
https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/
https://www.securityweek.com/chatgpt-data-breach-confirmed-as-security-firm-warns-of-vulnerable-component-exploitation/

The Top 6 Unknown SDLC Risks Legit Uncovers 13

GitHub Repo
Read/Write
Permissions

GitHub Repo
Read Only

Permissions

GitHub Repo
Admin

Permissions

GitHub Repo
Admin

Permissions

GitHub Repo
Admin

Permissions

GitHub Repo
Admin

Permissions

Developer
John Smith

Exposed
AWS Keys

Exposed
CI/CD Token

Exposed
User Passwords

Jenkins
CI/CD Server

S3 Bucket
 with Sensitive Data

Developer permissions sprawl is a widespread issue.
We often see organizations giving developers admin
access to every repo by default during onboarding.
With this setup, if one developer’s credentials
are compromised, an attacker now has access
to everything.

Keep in mind that a wide variety of people have
permissions to access the source code management
systems, CI/CD systems, and artifact registries that
make up your software development processes.
Each of these systems has a different permission
model, but all are orchestrated together, and the
complex infrastructure that underpins the SDLC

What we find

makes it difficult to manage all the permissions
a user may have. Add to that the fact that
organizations often have a bad security habit of
sharing credentials across systems, and you now
have most of your development team with powerful
access to a large portion of your company’s SDLC.

This complex and untamed web of permissions
creates an easy target for attackers. All they need
to do is gain access to the right developer or account
— either active or dormant — and they could obtain
broad and powerful access to your build environment
where they can wreak havoc, stealing IP and inflicting
downstream damage to your customers.

05 Developer permissions sprawl

The Top 6 Unknown SDLC Risks Legit Uncovers 14

To prevent permissions sprawl

 What we recommend

 Additionally, consider using RBAC for provisioning
permissions so onboarding and offboarding is
more scalable.

 Establish policies for permissions and then
regularly audit permissions.

Related attack

LastPass
The LastPass attack was a good reminder that it only takes one compromised
account for a malicious actor to gain access to the entire SDLC.

The Top 6 Unknown SDLC Risks Legit Uncovers 14

https://www.legitsecurity.com/blog/lastpass-software-supply-chain-attack

The Top 6 Unknown SDLC Risks Legit Uncovers 15

One increasingly common risk we identify is
infrastructure as code (IaC) misconfigurations.

Infrastructure as code use is exploding as
developers look for ways to move faster. With IaC,
developers can provision their own infrastructure
without waiting for IT or operations. However,
with increased use comes increased chance
of misconfigurations. In fact, 67% of survey
respondents in a recent ESG survey noted that
they are experiencing an increase in IaC template
misconfigurations. These misconfigurations are
especially dangerous because one flaw can
proliferate easily and widely.

Examples of these misconfigurations include:

 Not using the latest version of TLS

 Relying on username/passwords instead
of SSH keys

 Using vendor-supplied keys as opposed to CMKs

What we find

06 IaC misconfigurations

Legit identification of IaC misconfigurations

https://info.legitsecurity.com/esg-modernizing-application-security-to-scale-for-cloud-native-development?hs_preview=gsBpWMcu-175298132233

The Top 6 Unknown SDLC Risks Legit Uncovers 16

A misconfigured Amazon S3 bucket resulted in 3TB of airport data being
publicly accessible, including airport worker ID photos and other PII.

Related attack

To prevent IaC misconfigurations

 What we recommend

 Pay special attention to access controls
in IaC definitions:

 • Determine what users need to do, then craft
policies allowing them to perform only those tasks.

 • Do not allow all users full administrative privileges.

 • Start with a minimum set of permissions and
grant additional permissions as necessary.

 Inspect all infrastructure as code findings
with an eye for ensuring the most secure
options are used wherever possible.

 Make sure to use a reputable scanner,
such as Checkov, to detect issues.

 Always use known, reputable templates so
that developers have a secure baseline to
work from when creating new IaC artifacts.

The Top 6 Unknown SDLC Risks Legit Uncovers 16

https://www.darkreading.com/application-security/cloud-misconfig-exposes-3tb-sensitive-airport-data-amazon-s3-bucket

The Top 6 Unknown SDLC Risks Legit Uncovers 17

Legit is a new way to manage your application security posture for security, product and compliance teams.
With Legit, enterprises get a cleaner, easier way to manage and scale application security, and address risks
from code to cloud. Built for the modern SDLC, Legit tackles the toughest problems facing security teams,
including GenAI usage, proliferation of secrets and an uncontrolled dev environment. Fast to implement
and easy to use, Legit lets security teams protect their software factory from end to end, gives developers
guardrails that let them do their best work safely, and delivers metrics that prove the success of the security
program. This new approach means teams can control risk across the business — and prove it.

Visibility has become a core
requirement for software security.
Development is so fast-moving,
complex, and independent that
getting a handle on what you have
where is now a necessary first step.

 Learn more about ASPM and
the problems Legit is solving.

 Better understand how we
can help your organization.

Know the unknowns

legitsecurity.com

Request a demo

Learn more

http://www.legitsecurity.com
https://info.legitsecurity.com/request-a-demo
https://www.legitsecurity.com/hubfs/Collateral/A%20New%20Approach%20to%20Application%20Security%20-%20Legit%20Security%20-%20v1.pdf?utm_campaign=Resource%20Library&utm_source=Website&utm_medium=Resource%20Library&utm_term=PDF&utm_content=A%20New%20Approach%20to%20Application%20Security&hsLang=en

